FOOD & HEALTH PROJECT '23~食品のチカラで健康になろう~

出る杭研究

食肉の脂身に味はあるのか?動物種により脂身の味は違うのか?

〇比留間歩 \mathbf{z}^1 、澤野祥子 1 、水野谷航 2 (1.食品生命科学科、2.動物応用科学科)

研究の背景と目的

脂質は食肉の香気成分やコクの増加から嗜好性の向上に寄与 されるとされるが、以前は脂質自体には特定の味刺激がないと されてきた。我々のグループにおいても豚の背脂を水抽出し味 覚センサーで評価したところ、産地によって水溶性成分に起因 する味の差異が存在することが示唆された。したがって、牛 肉・鶏肉などの他の畜産物由来の食肉脂身においても、味の違 いが生じる可能性が考えられる。

そこで本研究では、複数の畜産物脂身を対象とし、脂身の呈 味特性の違いを明らかにすることを目的とした。

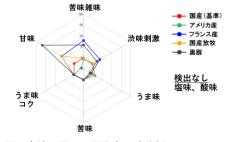


図1.産地の異なる豚脂身の味分析 [澤野(うま味研究会報告書 2022)]

研究・調査方法

〈対象〉

- 国産豚肉
- ・アメリカ産牛肉
- ・国産牛肉
- 鴨肉
- ・ラム肉
- 鶏肉

上記の食肉から脂部分のみをカットし、各20 gに40℃の純水100 mlを加えフードプロセッ サーで破砕後、高速遠心分離機にかけた。水溶性部分を回収し、フィルターろ過により残渣を除 いたものを試料とし、味覚センサー(TZ-5000Z)に供した(甘味、渋味は検出対象から除外)。

結果と考察

各種食肉脂身から水溶性成分を抽出し味分析を 行った結果、食肉脂身水溶性成分において、食品を 口に含んだときの先味の指標となる「うま味」、 「苦味雑味」について正の値が検出され、食品を飲 み込んだあとにも続く後味の指標となる「苦味」、 「うま味コク」を示す値が一部検出された。塩味、 酸味についてはいずれの肉種についても検出されな かった。

うま味・うま味コクについて、最も値が高かった のは鶏皮であった。鶏皮は他の食肉と比較して脂身 部分の形状が異なることから、呈味性成分の含有量 にも影響を及ぼしていることが推察された。

苦味雑味・苦味が最も高かったのは国産牛肉で あった。アメリカ産牛肉ではこのような苦味の強さ は認められなかった。この要因について、飼育方法 や環境、飼料に起因する可能性もあるが、複数検体 を解析するなどさらなる検証が必要である。

以上の結果より、動物種により脂質に含まれる水 溶性呈味成分の種類や濃度が異なり、味の違いを生 み出していることが示唆された。

表1. 味覚センサーによる各食肉脂身水溶性成分の味の数値化

[-]	苦味雑味 (先味)	苦味 (後味)	うま味 (先味)	うま味コク (後味)
10mMKCl (基準)	0	0	0	0
国産ブタ	7.3	0.27	7.32	-0.32
アメリカ産牛肉	4.99	0.32	7. 1	-0.2
国産牛肉	10.62	0.76	6.58	-0.24
ラム肉	7.43	0.2	7.31	-0.17
鴨肉	7. 27	0.18	7.09	-0.17
鶏皮	5. 43	-0.05	8. 55	0.16

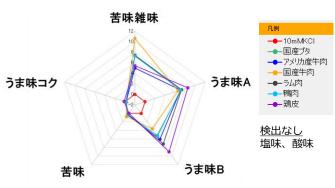


図2. 各食肉脂身の味分析結果

これから

今回得られた味覚センサーの結果と、ヒトの感覚に相関があるのか検討 するため官能評価を行うなど、さらなる研究の発展が期待される。