
生物の季節変化をデジタル技術で見える化する

サクラの開花日の観測結果と推定結果の比較

担当教員: 髙田久美子 萩原香月・飯島央也

研究の背景と目的

- サクラの開花が早まっている (岩﨑, 2024年度卒業論文) →2024年の開花は遅かった
- ・データ解析を行い、開花日の推移を見える化する
- ・開花日の推定方法を調べ、誤差の小さいものを検討する →400度、600度、DTS、DTS(D_{me})、DTS(Chill-Unit)

研究・調査方法

使用データ

横浜市:1953年~2025年の生物季節観測、地上気象観測 学内: 2023年~2025年の開花日観測

・推定方法

1. 積算温度(表1): 気温を積算

2. DTS法 (表2): DTS(式(1))を積算

$$DTS = exp\left(\frac{9500 \times (T - 15)}{(T + 273.2) \times 288.2}\right)$$
 …(1) T:日平均気温(℃)

※CU法は時別気温で算定して、24時間で平均

 $= 136.765 - 7.689\varphi + 0.133\varphi^2$

 $-1.307InL + 0.144T_F + 0.285T_F^2$ arphi:緯度(N°) L:海岸からの距離(km) T_F :1~3月の平均気温の平年値($m{^{\circ}}$ C)

$$w = 2\left(\frac{ch - 50}{1250}\right) - \left(\frac{ch - 50}{1250}\right)^2 \cdots (3)$$

ch:その時点でのChill-Unit積算値

34,~202340月16日 16月11、 子で33(3)(16月1						
(表1)	論文	使用する 気温データ	しきい値	積算温度 起算日		
400℃法	気象庁青森地 方気象台	日平均気温	400	2/1		
600℃法	(2024.3)	日最高気温	600	2/1		

(表2)	論文	しきい値	DTS起算日
DTS法	気象庁 (1996.12)	地点別 (横浜 23.7)	2/7
D _{me} 法	青野・守屋 (2003)	23.8	 式(2)による年間通算日
CU法	丸岡・伊藤 (2009)	24.5	積算CUによる 第一起算日 または1/1

CU法の起算日決定方法

時別気温から対応表に従ってChill-Unitを前年秋から積算して決定

CU積算値>50:第一起算日(T≦13.5℃:積算しない

T>13.5℃:重みw(式(3))を掛けたDTS)

CU積算値>1300: 第二起算日(これ以降は時別気温を用いたDTSを積算)

結果と考察

・横浜のサクラ開花日の推移(図1) ・横浜のサクラ開花日の観測日と 1990年代後半から観測・推定とも 推定日の誤差の頻度分布(図2) 早期化が顕著

2024年は観測日が顕著に遅い

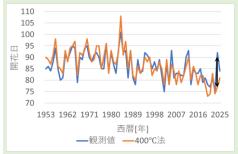


図1. 横浜の観測日と400℃法の推移

400℃法よりDTS(cu)の方が観 測日との誤差のばらつきが小さい

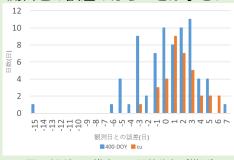


図2. 観測日と推定日の誤差分布(横浜)

・麻布大学内のサクラ開花日の 観測日と推定日(図3)

2024年においても観測日と推定 日に大きな誤差はない

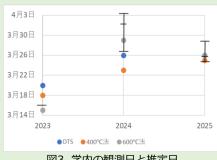


図3. 学内の観測日と推定日

これから

- ・ 気温以外の気象要素(樹齢や湿度)との関係性を考慮した開花予測の検討
- 全国データを用いた解析